Titanium monoxide ultra-thin coatings evaporated onto polycrystalline copper films

نویسنده

  • V. M. Fuenzalida
چکیده

We evaporated polycrystalline copper thin films of thickness between 10 and 100nm on silicon substrates with their native oxide under ultra-high-vacuum conditions. Some of them were exposed to air for a period ranging from 1 day to 2 weeks. X-ray photoelectron spectroscopy (XPS) revealed a clean copper surface with a trace of oxygen. These films that were exposed to air presented oxides in the state Cu(II), the amount of CuO depended on the time that the film was exposed to air. Subsequently, we deposited TiO ultra-thin films on polycrystalline copper substrates. Both these thin films were formed by electron beam evaporation. XPS spectra showed that the surface of the titanium monoxide (TiO) films was contamination-free. An evaporation of 0.3 nm of TiO reduced the native oxide of the copper substrates from Cu(II) to Cu(I) or Cu(0) and transformed the TiO into TiO2 at the interface. Low-energy ion spectroscopy showed that the complete coverage of the substrates depends on the thickness of the copper films. For 10 nm copper thin films the complete coverage occurred at 1.5 nm of TiO, and for 100 nm it occurred at 2.0nm of TiO. In samples exposed to air, the complete coverage occurred at a film thickness slightly higher than those treated under ultra-high-vacuum conditions. r 2004 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas adsorption gates based on ultrathin composite polymer films.

High surface area alumina coatings were prepared on surface acoustic wave (SAW) mass balances. These coatings were fabricated by anodic etching of evaporated aluminum films. The coatings consisted of roughly collinear pores penetrating through the monolithic alumina film. The nanoporous (NP) coatings were characterized by scanning electron microscopy, and the pore number density and diameter we...

متن کامل

Highly Conformal Thin Films of Tungsten Nitride Prepared by Atomic Layer Deposition from a Novel Precursor

Highly uniform, smooth, and conformal coatings of tungsten nitride were synthesized by atomic layer deposition (ALD) from vapors of a novel precursor, bis(tert-butylimido)-bis(dimethylamido)tungsten, (BuN)2(Me2N)2W, and ammonia at low substrate temperatures (250-350 °C). This tungsten precursor is a low-viscosity, noncorrosive liquid with sufficient volatility at room temperature to be a vapor ...

متن کامل

Band-Gap Tuning Of Electron Beam Evaporated Cds Thin Films

The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...

متن کامل

Surface Modification of Titanium by Atomic Transfer Radical Polymerization (ATRP)

Titanium is commonly used as an orthopedic biomaterial due to its unique mechanical properties and good corrosion resistance. However, after implantation into the body, titanium does not always integrate completely with bone. Its performance can be improved by surface modification with an osteointegrative, bioactive coating such as poly(sodium styrene sulfonate) (pNaSS). Thin films of NaSS were...

متن کامل

Intrinsic mechanical properties of ultra-thin amorphous carbon layers

In this work, we extracted the film’s hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30–100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004